

HEALTH

The Impact of Preoperative HbA1c on Reoperation Rates in Women Undergoing Surgery for **Stress Urinary Incontinence and Pelvic Organ Prolapse**

HEALTH SCIENCES

surgical innovation lab

Pelvic Organ Prolapse Cohort

7 (15.91%)

 $HbA_{1c} \ge 8 g/dL$ 60 (7.88%)

(73.32%)

75 (9.86%)

67.0 (58.0- < .01

(73.17%)

Kiersten Herzog¹, Xi Wang¹, Austin Bachar¹, Suman Sahil M.B.A¹, An-Lin Cheng Ph.D¹, Jada A. Ohene-Agyei¹, Jonathan P Shepherd, M.D², Gary Sutkin M.D¹

1: University of Missouri Kansas City School of Medicine, Kansas City, MO; 2: University of Connecticut Health Center, Farmington, CT

Introduction

- Prevalence of diabetes is rising
- Surgical procedures on patients diabetes is also rising
- Ideal HbA1c cutoff for surgery is unknown
 - U.S. Endocrinologists have recommended delaying if > 8.0%
 - Limited evidence in urogynecologic surgery

Aim

To determine how HbA1c impacts risk of allcause reoperation (for either recurrence or complications) in women undergoing an initial surgery for stress urinary incontinence or pelvic organ prolapse.

Methodology

Cerner Health Facts (HF) nationwide database

- 1/1/2010 to 11/30/2018
- 750 hospitals
- 519 million patient encounters
- ICD 9, ICD 10, and CPT codes for SUI and POP
- Included diabetic and non-diabetic patients who had HbA1c between 3 months before and 6 months after initial surgery
- 2 separate analyses comparing those who underwent reoperation vs no-reoperation
 - All women undergoing surgery for SUI
 - All women undergoing surgery for POP
- Multivariable logistic regression to determine impact of HbA1c on reoperation both as a continuous variable and comparing cut-off values of ≥8 vs. <8

Results

- HbA1c level, whether as dichotomous or continuous variable, did not significantly predict reoperation
 - Results similar for both POP and SUI populations
- In SUI surgeries, younger age, hospital in the Northeast region, urinary retention predicted reoperation
 - Vaginal atrophy was protective against reoperation
- In POP surgeries, younger age, hospitals in the Northeast, South, or West regions, and rural hospitals predicted reoperation Figure 2

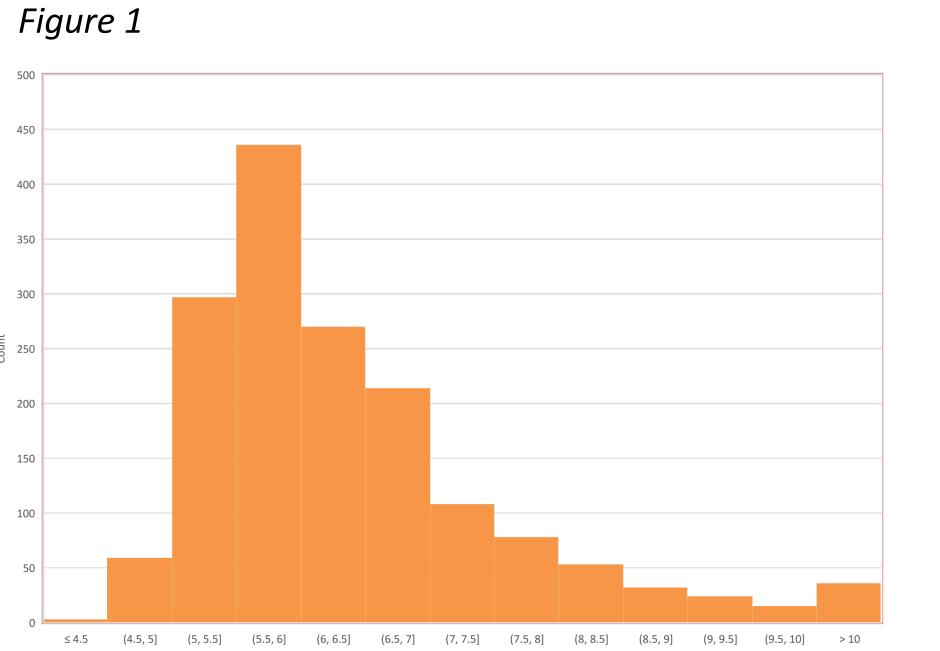


Figure 1: Histogram depicting perioperative HbA1c value closest to index surgery in the SUI population (N=1625)

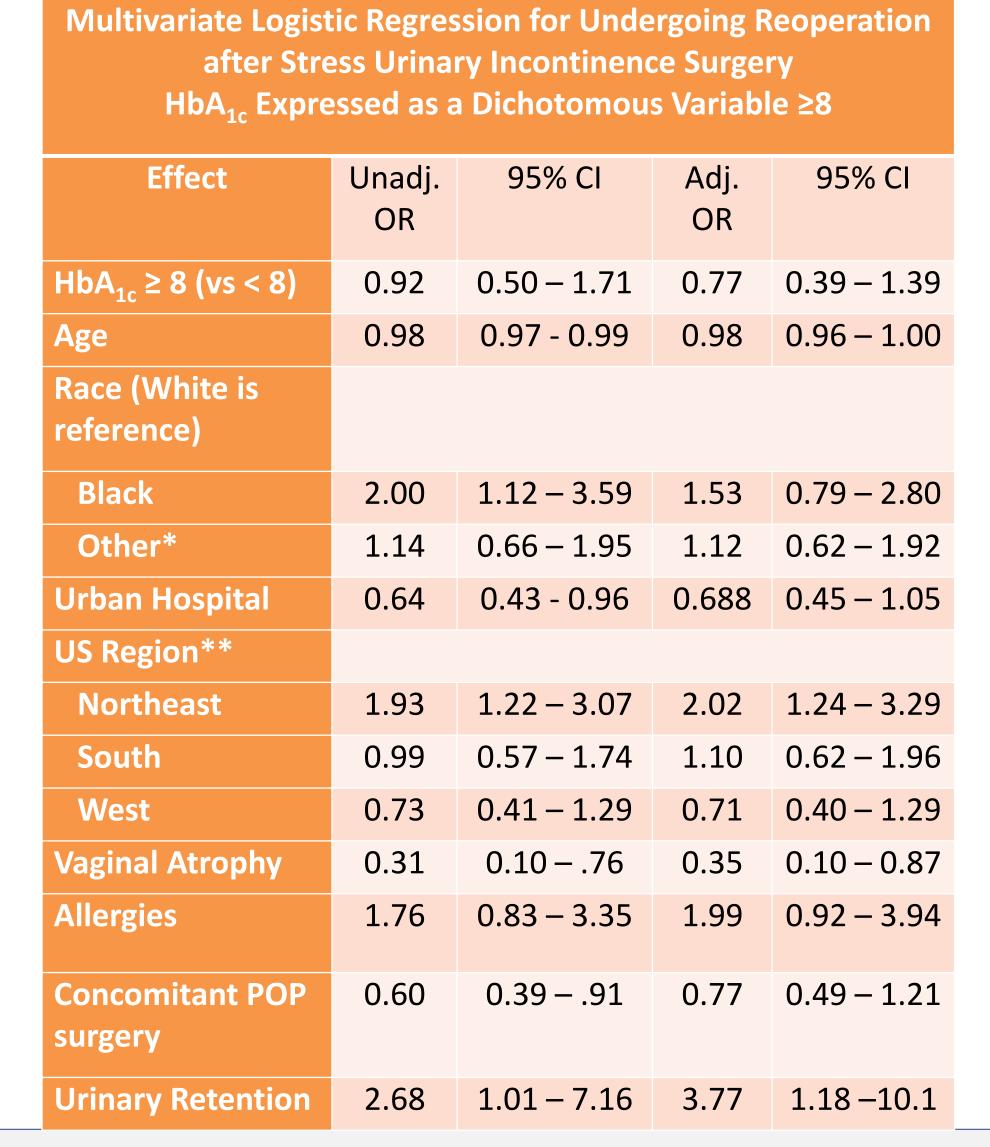


Figure 2: Histogram depicting perioperative HbA1c value closest to index surgery in the POP population (N=805)

Multivariate Logistic Regression for Undergoing Reoperation

after Pelvic Organ Prolapse Surgery

HbA _{1c} Expressed as a Dichotomous Variable ≥8							
Variable	Unadj. OR	95% CI	Adj. OR	95% CI			
HbA _{1c} ≥ 8 (vs < 8)	1.17	0.34 – 3.02	0.99	0.28 – 2.66			
Age	0.97	0.95 - 0.99	0.97	0.95 – 1.00			
Urban Hospital	0.24	0.13 - 0.4	0.192	0.09 – 0.39			
US Region**							
Northeast	3.07	1.00 –9.75	3.16	1.00 – 10.23			
South	2.52	0.86 – 7.79	5.93	1.82 – 20.61			
West	4.85	2.06 – 13.31	5.52	2.30 – 15.42			

^{*=}Any race other than Black or White

Baseline Demographics & Potential Confounders

Stress Urinary Incontinence Cohort								
	Reoperation							
Variable	No (N=1505)	Yes (N=120)	Total (N=1625)	p- value				
Age*	61.0 (50.0 - 69.0)	55.0 (47.0 – 68.0)	60.0 (50.0 – 69.0)	< .01				
HbA _{1c} *	6.1 g/dL (5.6 – 6.9)	6.0 g/dL (5.6 - 6.8)	6.1 g/dL (5.6 - 6.9)	0.35				
HbA _{1c} ≥ 8 g/dL	162 (10.76%)	12 (10.00%)	174 (10.71%)	0.79				
Race	,							
White	1199 (79.67%)	88 (73.33%)	1287 (79.20%)					
Black	102 (6.78%)	15 (12.50%)	117 (7.20%)					
Other***	204 (13.55%)	17 (14.17%)	221 (13.60%)					
US Region				< .01				
Midwest	499 (33.16%)	35 (29.17%)	534 (32.86%)					
Northeast	332 (22.06%)	45 (37.50%)	377 (23.20%)					
South	301 (20.00%)	21 (17.50%)	322 (19.82%)					
West	373 (24.78%)	19 (15.83%)	392 (24.12%)					
Rural	353 (23.46%)	39 (32.50%)	392 (24.12%)	0.03				
Obesity	255 (16.94%)	25 (20.83%)	280 (17.23%)	0.28				
Tobacco Use	290 (19.27%)	28 (23.33%)	318 (19.57%)	0.28				
Vaginal Atrophy	149 (9.90%)	4 (3.33%)	153 (9.42%)	0.02				
Urinary Frequency	60 (3.99%)	11 (9.17%)	71 (4.37%)	< .01				
Dysuria	79 (5.25%)	9 (7.50%)	88 (5.42%)	0.29				
POP Concomitan t	569 (37.81%)	32 (26.67%)	601 (36.98%)	0.02				
UTI	193 (12.82%)	20 (16.67%)	213 (13.11%)	0.23				
Urinary Retention	24 (1.59%)	5 (4.17%)	29 (1.78%)	0.06				

		0 (20:0:70)		
	(16.82%)		(16.65%)	
US Region				< .01
Midwest	282 (37.06%)	6 (13.64%)	288 (35.78%)	
Northeast	107 (14.06%)	7 (15.91%)	114 (14.16%)	
South	149 (19.58%)	8 (18.18%)	157 (19.50%)	
West	223 (29.30%)	23 (52.27%)	246 (30.56%)	
Rural	196 (25.76%)	26 (59.09%)	222 (27.58%)	< .01
Obese	94 (12.35%)	5 (11.36%)	99 (12.30%)	0.85
Smoker	119 (15.64%)	4 (9.09%)	123 (15.28%)	0.24
Vaginal Atrophy	110 (14.45%)	3 (6.82%)	113 (14.04%)	0.16
Urinary Freq	28 (3.68%)	1 (2.27%)	29 (3.60%)	1.00
Dysuria	40 (5.26%)	0 (0.00%)	40 (4.97%)	0.16
SUI Concomitant	343 (45.07%)	16 (36.36%)	359 (44.60%)	0.26
UTI	60 (7.88%)	1 (2.27%)	61 (7.58%)	0.24
Urinary Retention	11 (1.45%)	0 (0.00%)	11 (1.37%)	1.00

Conclusion

Principal Findings:

- No significant impact of HbA1c on total rates of reoperation in both SUI and POP surgical cohorts
- Given the results of other studies, it is reasonable to delay elective urogynecologic surgery to avoid postoperative complications, although the risk on reoperation is less clear

References

- 1. Surveillance United States Diabetes Surveillance System. Centers for Disease Control and Prevention.
- 2. Dronge AS et al. Arch Surg. 2006
- 3. Stryker LS et al. J Bone Joint Surg Am. 2013
- 4. Domek N et al. J Foot Ankle Surg. 2016 5. Underwood P et al. Diabetes Care. 2014
- 6. Engoren M et al. Asian Cardiovasc Thorac Ann. 2014
- 7. Avci BS et al. J Coll Physicians Surg Pak. 2019
- 8. Tebby J et al. BMC Med. 2014
- 9. Halkos ME et al. J Thorac Cardiovasc Surg. 2008 10. Membership of the Working Party et al. Anaesthesia
- 11. Dhatariya K et al. Diabet Med. 2012
- 12. Simha V et al. JAMA. 2019
- 13. American Diabetes Association. Diabetes Care. 2021 14. Gustafsson UO et al. Br J Surg. 2009
- 15. Ringel NE et al. J Minim Invasive Gynecol. 2021
- 16. Ringel NE et al. Female Pelvic Med Reconstr Surg.
- 17. Ortega MV et al. Female Pelvic Med Reconstr Surg.
- 18. Ranganathan P et al. Perspect Clin Res. 2017
- 19. Ablatt S et al. AJOG. 2022
- 20. Sharif F et al. Female Pelvic Med Reconstr Surg. 2020

^{**=}Midwest reference